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The vibrational and rotational motions in even nuclei are considered. A micro- 
scopic study of these motions leads to a relation between the vibrational motion 
in spherical nuclei and the rotational motion in deformed nuclei. Nuclei with 
like nucleons in the same shell are considered. The quadrupole two-body interac- 
tions are used in the large single j-shell of even nuclei. The energies and transition 
operators of nuclei in the nuclear rotational region are calculated using this 
microscopic method. Quadrupole moments are also calculated. These calcula- 
tions are compared with the rotational model of the aligned coupling scheme, 
The present calculations are in good agreement with previous calculations. 

1. I N T R O D U C T I O N  

Study ing  the p r o b l e m s  o f  l ike nuc leons  in one shell  is o f  great  he lp  in 
p rov id ing  a be t te r  u n d e r s t a n d i n g  o f  the cor re la t ion  be tween  the nucleons .  
Exact  so lu t ions  of  very s imple  mode l s  have been  c o m p a r e d  with the so lu t ions  
by  exist ing a p p r o x i m a t e  methods .  This c o m p a r i s o n  makes  it poss ib le  to 
gain  an i m p r o v e d  u n d e r s t a n d i n g  o f  the a p p r o x i m a t e  methods .  In  add i t ion ,  
this  c o m p a r i s o n  serves as a tool  for  f inding cor re la t ions  to these a p p r o x i m a t e  
methods .  In  nuc lea r  phys ics  the long-range  c o m p o n e n t  o f  the res idual  force 
is r e spons ib le  for  the  t e n d e n c y  to de fo rma t ion ,  whi le  the shor t - range  com- 
ponen t  is r espons ib le  for  giving a spher ica l  system. In the last few years ,  
p romis ing  progress  has been  made  by regard ing  the col lect ive mode l  as a 
consequence  o f  the in te rp lay  be tween  these two tendencies ,  and  by  recogniz-  
ing the a p p r o p r i a t e  coup l ing  scheme for these  two c ompone n t s  (Mot t l e son ,  
1960; Bohr  and  Mot t l e son ,  1962/1963). The  a l igned  coupl ing  scheme is 
used  for the  long- range  c o m p o n e n t ,  while genera l i zed  senior i ty  is i n t roduced  
for  the shor t - range  componen t .  
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Appropriate calculations with exact diagonalization of the Hamiltonian 
have been used in treating even nuclei with many particles outside a closed 
shell. There are two methods for these calculations, which are basic variants 
of the appropriate  second quantization method. The first method is the Tam 
(1945)-Dancoff (1950) (TD) method and the second is the random-phase 
approximation (RPA) method. In the TD method the quasiparticle interac- 
tion is taken into account in the excited states, but that interaction does 
not affect the ground state. Therefore, the ground state of  an even-even 
nucleus is the quasiparticle vacuum. The main shortcoming of the TD 
method is the asymmetric treatment of  the ground and excited states. This 
defect has been corrected in the RPA method by including the quasiparticle 
interactions in all of the states. The approximate RPA method deviates from 
the shell model by an unsatisfactory description of spherical nuclei. The 
deviations between the approximate calculations and the shell model define 
two collective effects. One of  these effects appears  near the end of the shells, 
defining the spherical nt, clei with a tendency for vibrational motion. The 
other effect appears near the middle of the shells, where the nuclei are 
deformed, with a tendency for rotational motion. 

For low-lying levels in even-even nuclei, such as Xe 122-132, it was 
observed (Marinaga and Lark, 1965) that high anharmonicity in the vibra- 
tion appears if the lower energy levels are assumed to be vibrational. 
Comparing the position of the 4 + levels relative to those of  the second 2 + 
levels, one confirms this anharmonicity, noticing that in all known cases 
the 4 + levels are slightly higher than the 2 + levels. This is in contrast with 
the position and also the trend in the relative position with respect to the 
neutron number  of  the second 2 + levels in permanently deformed osmium 
isotopes, in which the 2 + levels are the first member  of  the gamma vibrational 
levels. This shows that the states observed in the spectra of  even-even nuclei 
such as Xe are basically vibrational. However, the anharmonicity in the 
vibration cannot be ignored, and in addition the ground states of these 
nuclei are not permanently deformed. This effect of  anharmonicity in 
vibration introduces the suggestion of the existence of quasirotational 
spectra as an intermediate situation between the vibrational motion in 
spherical nuclei and the rotational motion in deformed nuclei. 

One of the most interesting methods of studying the vibrational motion 
is the random-phase approximation (Marumori  et al., 1968), which gives 
the equation of motion of the functions of  the two-body correlations and 
the quadrupole correlations in a harmonic approximation.  On the other 
hand, the rotational motion is considered (Bohr and Mottleson, 1975) 
basically by using the cranking model, by introducing a microscopic basis 
(Bohr, 1977) to explain some properties of  the rotating nuclei. From these 
studies it was found that one of the most important characteristics for the 
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rotational phenomena in nuclei is the strong quadrupole two-body correla- 
tions. Thus, an approach was needed that describes both vibrational and 
rotational motions on the basis of both quantum mechanical and micro- 
scopic descriptions. 

In the present work, we consider the vibrational and rotational motions 
in even-even nuclei on a microscopic basis. It is our aim to obtain a relation 
between the vibrational motion in spherical nuclei and the rotational motion 
in deformed nuclei. We use the quadrupole two-body interactions in the 
large single j-shell for even nuclei. With this approach,  we calculate the 
energies, transition operators,  and quadrupole moments,  in order to compare 
these calculated values with previously calculated values. 

In Section 2, the mathematical  formulas and expressions are introduced. 
Numerical calculations and results are presented in Section 3. Section 4 is 
devoted to discussion and calculations. 

2. MATHEMATICAL FORMULAS AND EXPRESSIONS 

Marumori  et al. (1968) suggested a method for calculating the vibra- 
tional and rotational motions in even nuclei based on adopting the single 
j-shell with nucleons interacting through the pairing plus the quadrupole 
force. In the present work, we shall use only a pure quadrupole force for 
the cases considered here. 

We introduce a brief consideration of this microscopic theory, keeping 
in mind that we shall use the obtained results for the special cases we 
consider in the present work. To construct the algebra of the problem, let 
us define the conventional pair operators 

Aj+M = (l/x/2) E (jjmlm2/JM)Cfm,C;m2 
mlm 2 

+ 
BjM -= 

r~/l/t/2 

which satisfy the relations 

+ j+ra 
( j j m l m 2 / J M ) C j ~ , ( - )  2Cj_m2 

(1) 

(2) 

From equation (3), we see that J is only an even integer, so that J :  
0, 2, 4 , . . . .  Then, the Hamiltonian including both the pairing plus the 
quadrupole forces is given as 

H = 8 o N  1 .--~,-.,+ l + - ~ U r o o - ~ X  Y~ (5) 
M 

I / 2  ]q~+ + 
N = (2j + 1) uoo, P0o = (2 j+  1)~/2Ao0, + + O2M = (6) qB2M 

Aj+M = (--)JAjM (3) 

Bj+M = (--)MBj_M (4) 
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In equation (5), G and X denote the strengths of the pairing forces and the 
quadrupole force, respectively. Here eo and P~o are the single-particle energy 
and the pairing quasiparticle operator, respectively. The operators N and 
Q2M are the number and mass quadrupole moment operators, respectively. 
The quantity q is the reduced matrix element of the single-particle quad- 
rupole moment and is defined by 

( jml /  r 2 Y2M ( O, q~ ) / jmz) = q ( -  )J+m2(jjm, m2/ Z M> (7) 

The commutation relations among the pair operators AjM, Aj+M, BjM, and 
5- BsM are given as 

A + [as, M,, ~2M2] = ~ { 1 + ( - )  ~'} ~J,~2~,~2 
-�89 E { l+ ( - ) s ' }{ l+ ( -1 )  J~} 

J3 M3 

• Z(J1JzJ3)(J2J3MzMa/J1M,)Bj3M ~ (8) 
a + _-�89 [Bj, M~, J,M,] ~, {I + ( - )s ' } { l  + (-)s~} 

J2 M2 

X + Z ( J~J2Ja) ( J2JaM2 M3/ J1 MI) A s2~ ~ (9) 

[Bj, M,, Bj+M3] = ~] {1 - ( - )  j'+j2+~} 
J2 M2 

x Z(J ,  J2J3)(J2J3M2Ma/J, MOBs2M~ (10) 

where 

Z(JIJzJ3) =- [(2-/2+ 1)(2J3 + 1)]a/2W(jjJ3~, Jlj)  (11) 

The commutation relations given by equations (8)-(10) are regarded as 
fundamental, and replace the anticommutation relations among the one- 
particle operators Cj,, and C+m as 

-~- ,~ = { C j I T I I ,  C j n l 2 } -  }- = 0 {Cj,,, Cjm2}+ 6,,6,,~, + (12) 

From the previous equations the definition of N is given by 

N = 2  Cj~ Cjm (13) 
m 

Instead of the definition given by equation (13) for N, the following relation 
is used: 

2AjMAsM + 2AjMAsM + BjM Bs~t + BsMBjM 
Ely1 

-Y. (2J+ 1)[1 + ( - ) s ] l  (14) 
J ) 

which is independent of equations (8)-(10). 
From these equations we see that the basic idea in the Marumori work 

is to neglect the composite nature of the pair operators defined in equations 
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A JM B JM (1) and (2). Also, he regarded the pair operators + and + as funda- 
mental operators that must satisfy equations (3), (4), (8)-(10), and (14). 
Then, he solved the dynamics of the system, using the Hamiltonian given 
by equation (5), which consists of pair operators. It is notable that if we 

+ + 
BjM restrict ourselves to the pair operators AjM and with J = 0 ,  then 

equations (8)-(10) are reduced to the commutation relations characterizing 
the quasiparticle formalism for the pairing correlations (Kerman, 1961). 
Also, if we restrict our attention ~o the pair operators Bj+M with J-<2, 
equation (10) reduces to the commutation relations characterizing the Elliot 
(1958) model. Keeping in mind that + then can relate the Q 2 M  = + qB2M, we 
total angular momentum JK introduced by Marumori et al. (1967) to the 
operators B~-K through the relation 

JK = [~ j ( j+  1)(2j + 1)]'/2B+ K (15) 

This method is useful for forming a bridge between the vibrational motion 
in spherical nuclei and the rotational motion in deformed nuclei. For that, 
we do not need to define any free ground state such as a spherical or 
deformed Hartree-Fock ground state at the outset. Furthermore, it would 
be a more suitable method to investigate strong two-body correlations 
resulting from the pairing force and the quadrupole force. This happens 
because we did not employ the special technique of the generalized Hartree- 
Fock factorization proposed by Kerman and Klein (1963, 1965). 

In the following, we write the equations of motion for the pair operators. 
We consider a special case by considering only pure quadrupole vibrations. 
We start with the general equations, by giving the following set of equations 
of motion: 

[/4, + ArM] 

= {e + - G[1 + ( - ) J ]  -�89 + 1)6JO3Mo}Aj+M 

+ �89 + 1)'/2[ 1 + (-)J ]Bj+MAo+o 

-~xq 2 E [1 + ( - ) J ] [1  + ( - ) ' ] [ 5 ( 2 1 +  1)] '/2 W(jjI2, Jj) 
I 

x • (2IAK/JM)B~AA;K (16) 
A K  

[H, ( - ) J - ~ A j - M ]  

= - [ e - - � 8 9  1)3~o6Mo](-) J MAj M 

-�89 " + +(--) ]BjMAoo 
q-�89 2 E [1 + (--)J][1 + (--) /][5(2I + 1)] '/2 W(jjI2, Jj) 

I 

x 2 (2IAK/JM)B2A(-)+ *-KA,_K (17) 
AK 
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[ n , B ~ l  

= G(2j § 1)'/%o8~o- G[1 + ( - Y ] B ~  
+�89 s + A ,-M + ( - )  ][AjM oo - ( - )  aj_MAoo] 
+lxq2 2 [1 - ( - ) J+ t ] [5(2I  + 1)] 1/~ W(jjI2, Jj) 

1 

• • (2IAK/JM)(B~kB2+ + + Bz BtK) (18) 
AK 

e+ = eO[1 + (_)s]  •189 y. [1 + ( - ) J i l l  + (_)z ]5(2I + 1) W(jjI2; Jj) 
I 

(19) 

Let IN; "yLL2) represent one of the members of the rotational band built 
on the ground state of the N-particle system. The quantities L and Lz are 
the quantum numbers of the angular momentum and its projection, respec- 
tively. Y refers to a set of additional quantum numbers specifying the 
rotation. We keep in mind that in our case N is an even number and so L 
is an even integer, L = 0, 2, 4 , . . . .  We then get the equations 

{W~ ) -  W~22}(N; 7LLzIAj+~IN-2; 7L'L'~) 

= (N;  yLL~I[H, Aj+u]IN-2; yL'L')  (20) 

{W~ ) -  W~'_)2}(N; yLLzI(-)S-UAj_MIN+2; yL'L'~) 

= ( N ;  yLL~[[H, (-)J-MAj_M]IN+2; yL'L'z) (21) 

{ w ~ ' -  W ~L'~''N r~s'~ = ; 7LL~IB+MIN; yL'L'~) 

= (N;  yLLzl[U; Bj+M]IN; yL'L'~) (22) 

where W~ i is the energy eigenvalue of the state IN; yLL2) subject to the 
definition 

w~L"= w ~ ) -  w ~  '~, L' w ~  '~- ~" W N - 2 ) / 2  A N,N-2 = ( (23) 

Then equations (20)-(22) can be written as 

W~'~"<N, "yLL~IA~MIN- 2; ~t't'~) 
= (N;  yLLzI[H-*Ct'" _. ]Q, Aj-m][N-2;  TL'L'z) (24) A N ,  N 2 

W~c')(N; yLLzI(--)J-MAs-MN--2; yL'L'z) 

= ( N ;  yLLzI[H -'~v~,~ N+2,N " ]Q, (-)J-UAs-M]IN+2; L'L'z) (25) 

w ( L L ' ) /  ~r + N \J',; 7LLzlBmIN; yL'L'z) 

= (N;  yLLz[[H; Bs+M]IN; yL'L'z) (26) 

Equations (24)-(26) are considered the fundamental equations for this 
approach. 
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In solving the dynamics of a system that consists of pair operators, a 
basic approximation is introduced into the theory. This basic approximation 
is introduced by considering that the amplitudes 

( N; yLLz I A~;MIN - 2; TL'L~) 

(N; TLLz I(--/-MAj-M IN + 2; TL'L'z) 

( / ;  "yLLzIB~%IN; yL'L'z) 

for values of J-<2 and for the case L '=  L with L - 2 - > 0  are very large 
compared with all other amplitudes of pair operators, so that the other 
amplitudes may be neglected. With that basic approximation, the funda- 
mental equations (24)-(26) are reduced to a simple set of coupled equations: 

W~L')(N; 7LLz [A~M[N - 2; 7t ' t ' z )  
A + 

= ( N ;  yLLzI[H -x(L') �9 N, A2M]JN-2,  7L'L'z) (27) Jt  N , N - 2  

W~L'~(N; ~,LLzI(-)2-'~A2_MIN + 2; ~,L'L'~) 

=(N;  ~,LLzI[H-~'),, ~+~.u �9 N," (-)2-MA2_.]IN+2, "eL'L'~) (28) 

W ~ L~,)(N; ~,LLz I B ~ I N ;  ~,L'L'z) 

= (N;  7LLzI[H, B~M][N; yL'L'z) (29) 
where 

L ' =  L - 2 > - 0 ,  L ' = 0 ,  2, 4 , . . .  

(N; yLLzI[H-A~')N_2 �9 ]Q, a~-o]lN-2; yLLz)=O (30) 

(N;  yLLz][H - x~L'~ �9 ]Q, Ao0]lN + 2; 7 L t z )  = 0 (31) I t  N + 2 , N  

keeping in mind that AI+M =0  and that J=O, 2, 4 , . . .  from the relation 
A 

�9 �9 1) N; and A~M + = (--),JAjM, B~K = [ j ( j  + I )(2j + I )/3 Jk; Boo= (2j + +  -1/2 " 
also [/4, N] = [/4, Jk] = IN, -lk] = 0. Equations (27)-(29) are connected with 
excitations of the N-particle system with excitation energies W~ L'). From 
these formulations, we notice that equations (30) and (31) could be simply 
reduced to the BCS equation, and this happens in the case that the quad- 
rupole force is absent (for X ~ 0) and also for L = 0 and with the A's regarded 
as the chemical potentials. 

Then, we can introduce the reduced amplitudes through the relations 

(N; 7LLzIAyMIN-2;  ~,Zt'z) 

= (L'JL'zMILLz)(N; rtllAfll N - 2 ;  TL') (32) 

(N; 7LLzI(-)JAj_MIN + 2; 7 t ' t ' z )  

=(L'JL'~MILLz)(N; rLIIA~itN + 2; rL') (33) 
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(N; yLLzIBs+M[N; yL'L'z) 

=(L'JL'zMILLz)(N; yLI]B~I[N; yL') (34) 

Therefore, by using equations (16)-(18) and introducing these in equations 
( 2 7 ) - ( 2 9 ) ,  w e  can  write 

W~w)0+(N; LL')= + ' + 2eu(LL )4, (N; LL') 

+2'/2[AN, N_2(L')+fN, N_2(LL')]f~ LL') (35) 

w~L')~-(N; LL')=-2e-N(LL')6-(N; LL') 

+21/2[AN, N+2(LL')+fN+2,N(LL')]O~ LL') (36) 

W~L')0~ LL')=--2e~176 LL') 

+2'/2AN.N 2(L')O+(N; LL') 

- 2t/2AN+2,N(L')O-( N; LL') (37) 

with L'= L-2-->-0 (L'=0, 2,4,6, . . . ) .  
In equations (35)-(37), ~b+(N; LL'), ~b-(N; LL'), and tp~ LL') are 

the reduced amplitudes of the pair operators with J = 2. These amplitudes 
are defined as 

0+(N; LL')=-(N; yL]]A~]]N-2; yL') (38) 

0 - (N;  LL')=-(N; TLIIA2IIN+2; yL') (39) 

C(N; t t ' )  -~ <N; "vLII B~ II N, "yt'> (39') 

with L'= L-2->0  and with e+N(LL ') and e-N(LL') corresponding to the 
renormalized single-particle energies due to the deformation. 

Then we get 

(N; yLIIQ~IIN; yL)= (q(N; ytllU~llN; yL)) (40) 

e+N(LL ' ) -~'~e + --AN, O - 5xqW(jj22; 2j){5 (2L + 1)] ~/2 

x W(LL22; 2L')(N; TL]IQ;IIN; yt)  (41) 

eN(LL')=-�89 L' -5xqW(jj22;2j)[5(2L+l)] '/2 N + 2 , N  

x W(LL22; 2L')(N; yL]IQ~IIN; yL') (42) 

where e • is defined by equation (19). 
The quantity e~  ') is defined by 

e~ ( LL ') = G _ ~q2 W2(jjI 2; 2j) RLL, (43) 
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where RLL. = L(L+ 1) -  L'(L'+ 1) and this is connected with the rotational 
motion through the second term. 

The gap AN, N_2(L') and the gap fN, N-2(LL') are defined as 

2'/2AN.N_e(L') =- G(2j+I)'/2(N; yZ'llAo[lN-2; yt ')  (44) 

21/2AN.2,N(L' ) ~ G(2 j+  I) ' /2(N; TL'HAolIN+2; yL') (44') 

2*/2fN.N_z(LL')=----Zxq 2 • [5(2I+ 1)]I/2W(jjI2; 2j) 
I =0,2 

x [5(2L'+ 1)]~/2W(LL'22; IL) 

x (N; YL'IIATIIN--2; yL') (45) 

Equations (35)-(37) show the advantage of the arrangement of pair 
operators in the quadratic terms on the right-hand side of equations (16)- 
(18), which becomes more clear. Our present basic approximation leads to 
equations (35)-(37), which are written down in a compact closed form with 
respect to 0(• LL') and ~0(~ LL') and do not contain amplitudes 
such as O(:~)(N+2; LL') explicitly. Thus we can use equations (27)-(31) 
together with matrix elements of equations (8)-(11) (with respect to the 
states under consideration) to determine all the amplitudes of the states 
and their normalizations and eigenvalues w~L'), 't N,N+2,~(L') and aN, N-~'(L') - com- 
pletely. 

Let us introduce an approximate formal solution of the excitation 
energy, in order to show the physical meaning of the solution. For this 
purpose equations (35)-(37) can be rewritten as 

( 2e+N( LL ') - w~L'))~b(+)(N; LL') 

+ 2'/2{AN, N_2(L ') +fN, N_2(LL')}O~~ LL') = 0 (46) 

( -2e N( LL') - w ~#L'))O(-)( N ; LL') 

+ 2U2{AN, N+2(L ') +fN+2,N (LL')}O~ LL') = 0 (47) 

( - 2 e ~  ( LL ') -~o~L'))~O(~ LL') 

+ 2~/2AN, N_2(L')O(+)(N; LL')-2'/2AN+2,N(L')q/-)(N; LL') =0 (48) 

Equations (46)-(48) are subject to the condition 

(2e+N(LL ') - 09~ r') ) 0 (2'~2{AN, N--2(L') +fN.N-2(LL')}) 
o (-2e%-~(LL')-w~ L'~) (--2~/2{AN+2,N(L')+ fN+2,N(LL')}) =0 

[ (2UZAN.N_2(L,)) (_2,/2AN+2.N (L,)) (_2eO(LL,)_oj~r,)) (49) 

Equation (49) is not simply a cubic equation with respect to oJ~ L'I, 
because the coefficients (which should be determined self-consistently) are 
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generally implicit functions of w ~  L'~. Since, by definition, we have the 
condition 

co~L" = _w~L" 

we are led tO a~nother condition given by the expression 

!2e(~)(L'L)+ w(~ L')) 0 (2'/2{AN,~-2(L) +fN, N-2(L'L)}) I 
0 ( -2e~- ) (L 'L )+w~ L')) (--2'/2{AN+2,N(L)+fN+2,N(L'L)})=0 (50) 

(2U2AN, N_z(L)) (--2U2AN+2,N(L)) (-2e~)(L'L)+w~ L ) 

From equations (49) and (50), we have the following relation (in which the 
coefficients are of the symmetrized form with respect to L and L'): 

((..0 (~L'))3 --'~'NkL'L'IktXIN/'~(2)(I/-t~l' ,(LL')'I2! - -"~NI ,  . . . .  (LL') -- C(~)(LL')=O (51) 

where 

C ~ ( L L ' / =  - C ~ ) ( L ' L )  

- - -  [ ~ ; , ( L L ' )  - ~ ) ( L L ' )  - ~ ~ ( L L ' )  

- e~)(L'L) + e~)(L'L)  + e(~)(L'L)] (52) 

C~)( LL ') = C(~)( L'L) 

=_ 2{e~)( LL')e~)(  LL ') + e~)( L'L )e~)( L'L) 

+ e(~ ') - e~)(LL')] 

+ e~)(L'L)[e(~)(L'L) - e~ ) ( t t ' ) ] }  

+ {[AN+2,N (L') +fN+2,N (EL')]AN+2,N (L')AN+2.N (L') 

+[AN, N-2(L')+ fN, N 2(LL')IAN.N-2(L') 

+ [A N+E.N (L) +fN+2.N (L'L)]AN+~.N (L) 

+ [A N,N_2(L ) +fN, N_2(L'L)]AN, N_2(L)} (53) 

C~)(LL ') = - C ~ ) ( L ' L )  

=_ 2[2e(~)(LL')e~(LL')e~)(LL ') 

- e~)(LL')e~)(L'L)e~)(LL')]  

+ [AN, N-2(L') +fN.N-2(L'L)]aN, N_z(L')e~)(LL ') 

' ' e ~  (L  L) --[AN, N 2(L)+fN, N-2(L L)]&N,N-2(L ) ~-) ' 

- [~ N+2.N (L') +fN+2.N ( LL')]AN+z.N (L')e~)(LL') 

+[AN+z.N(L)+fN+2,N(L'L)]AN+z,N(L)e(~)(L'L) (54) 

Let us consider the following approximations: 
A(L) _ I ( L )  I(L')  I(L')  N,N--2 " tN+2 ,N=t tN ,  N 2 -- '" N+2,N (55)  

C~'(LL')  =- - C~'(L 'L)  = 0 (56) 
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These approximations can be understood by noticing that in the case of a 
pure pairing force (i.e., X = 0), equations (55) and (56) hold exactly and 
are not approximations. With the condition given by equation (55), we have 
to understand that one of the solutions for w~  L') becomes zero. These 
conditions as given by equations (55) and (56), together with equations 
(30) and (31), should be used in determining A(~)N_2 and ,~(L)N+2.N. Introduc- 
ing the conditions expressed by equations (55) and (56) into equation (51), 
we get 

(w~L')) 3 -  C~)(  LL') (  oo ~L'~) ~ - C%)( LL ' )w  ~ L') - C~)(  L L  ') = 0 

Therefore 

(O)(NLL')) 2 -  C ~ ) ( L L ' ) o ) ~  L')-  C%)(LL ') = 0 (57) 

Making use of condition (55), we have 

C~)(  L L  ') = - e  ~)( LL  ') + C ~ (  L' L ) 

= - 5 x q  2 W ( j j l 2 ,  2j)RLL, 

Therefore, equation (57) can be written in the form 

(w~L')) 2 -- 5xq 2 W( j j I 2 ;  2j)RLL,W~ L')-  C ~ ) ( L L  ') = 0 (58) 

Equation (58) is a quadratic equation in oJ~ t'l, which can be solved, giving 
the following solution for the excitation energies: 

, s 2W2(jj12, 2j)RLL' o) ( LL ) = ~xq 

+{[~xq2W(j j12,  Zj)RLL,]2+ C~) (LL ' ) }  '/2 (59) 

with L = L' + 2, where L' = 0, 2, 4, 6 , . . . .  
Direct calculations of equation (59) for the case of pure pairing force 

in the limit x ~ 0 give 

to~ L') = 2[(Co- AN)2+ A~(LL,)],/2 (60) 

with 

where 

.~L=0~ -�89 22j-~1 ) • 0  - -  1~ -~- S 0 - -  I~. N + 2 , N  - -  (61) 

i 2 2 A ~ ( L L ' ) = - ~ a N + 2 , N ( L ) +  AN, N 2(L)+ A~.~+2,~.(L')+A2N, N _ d L  ') 

= I _ G 2 ( 2 j + I ) 2 N - L ' ( 1  N+L ' .~  (62) 
4 2 j + l  \ 2 j + l  ] 

From equations (60)-(62), we notice that equation (60) corresponds to the 
two-quasiparticle energy with "'backing effects," while equations (61) and 
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(62) show that equation (60) represents the same spectrum as does the exact 
solution. 

On the other hand, in the case of a pure quadrupole force, in the limit 
G--> 0, which is the pure Elliot-type rotational spectrum, we have 

tO(N LL')= (h2/2go)RLL , (63) 

where 

go=(h2/ lO)xq2W2(j j l2 ,2 j ) ,  R L L , = L ( L + I ) - L ' ( L ' + I )  

It is clear that, under the same approximations as these underlying the 
conventional random-phase approximation, equation (59) is reduced to an 
equation that describes the "phonon"  spectra. Thus, our approach provides 
a bridge between the vibrational motion and the rotational motion. 

3. NUMERICAL CALCULATIONS AND RESULTS 

For numerical calculations, let us use the pair operators A~M§ and the 
particle-hole operators Bj+M following the Marumori et al. formalism, 
defined as 

Aj+M =(l /x/2)  ~ ( jmljm2[JM)Cj+,Cf2 (64) 
m l m  2 

+ . �9 + j + m  BjM = Y~ (JmlJm2[JM)Cj,, ,(-) ~Cj ....  (65) 

In the present calculations, we restrict our results to the case of a single 
j-shell. Equations (64) and (65) give a coupled set of equations of motion 
of the different operators A~-M and BjM.+ These equations of motion are 
given by equations (16)-(18). The typical rotational spectrum in the case 
of a pure quadrupole force, which is the limiting case when G ~ 0, is given 
by 

EL = ( 1 / 2 g ) t (  L + 1) (66) 

The reduced transition probability for the electric quadrupole transitions 
E2 within a rotational band is defined as 

1 
B(E2, L-> L') - 2L '+  1 ~,L~.L_ '. [(N, yLLzIME(20)IN, yLL'.)I 2 

= (L020I L'0)2( N, yL II ME (20)II N, TL') (67) - 

But the diagonal matrix element of the Me (20) operator is proportional to 
the intrinsic quadrupole moment Qo, 

(N, yLl lMe(20) l ly  yL') = (5/16)'/2eQo (68) 
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Then we can obtain a simple expression for the E2 transition probabilities, 

B(E2, L-, L') = (5/16)e2Qo(LO2OIL'O) 2 (69) 

The static quadrupole moment is defined as the expectation value of the 
quadrupole operator, 

eQo = (167r/5) u2 f p(r)r2y2o(O, oh) dr (70) 

in the state IN; 7LLz), where L" = L~ (i.e., M = K)  (7 = L'z). This means that 

QL = (N, 7LLzI(1/e)QoIN, 7LLz) (71) 

Therefore, 

QL = (16rr/5)u2(1/e)(N; 7LLzl f drp(r)r2y2o(O, ~b)[N, yLLz) (72) 
d 

o r  

3 K 2 - L ( L + I )  
QL = Qo (73) 

(L+  1)(2L+3)  

For the case of K = 0, we get for the static quadrupole moment a simple 
expression, 

L 
QL - -  Qo (74) 

(2L+3)  

In equations (66)-(74), g is the moment of inertia, L is the angular momen- 
tum, and Q0 is the intrinsic quadrupole moment. In the present calculations 
of the transition probabilities and quadrupole moments, we have to extend 
the generalized sum rules introduced by Marumori et al. We have the 
equation 

(N; yLIIQ~IIN, TL)= q(N; yLIIB;[[N; yL) (75) 

where q is given by the equation 

(jml[ r2 Y2~ (0, qS)lj - rn2) = q(-)J+m2(jmljmz]2M) (76) 

The Hamiltonian of pure quadrupole vibrations is given by the expression 
A M ^ H = -�89 E QM(-) Q-M = -�89 • Q2M + Q2M (77) 

M M 

This expression is obtained easily as the limiting case when G-~ 0, in the 
absence of the pairing force. In equation (77) X is the strength of the 
interaction. The mass quadrupole moment QM is expressed using the par- 

B 2 M  a s  ticle-hole operator + 

(~M = qB;m (78) 
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where q is the reduced matr ix  element  of  the single-particle quadrupo le  
moment .  This single-particle quadrupole  m o m e n t  is defined as 

(jmllr 2 Y2M(O, qS)lj - m2) = q(-)J+m2(jmljm2]2M) (79) 

Then the ground-s ta te  energy Eo and ( H )  for the single-particle energies 
are given as 

(N; YLGIHIN; yLL~) 
E ~  ( N ;  TLLzIN; TLLz) (80) 

( N ;  TLL~ 1-�89 Y-,M q2B2+~(-)MB2-MIN; yLLz) 
( H )  = ( N ;  ytLzlN; yLtz) (81) 

The state funct ion IN; yLLz) is a normal ized functions,  which means  that  

' . *N yLLz) 1 (82) N, TLL~I , = 

Then,  in the case of  quadrupo le  force for  G = 0, we get 

1 2 + E0 = ( H )  = ( N ;  yLL~[-~xq B2oB2olN; yLL~) 

=-�89 yLLzIB2+oB2oIN; yLL~) (83) 

Then,  by using the commuta t i on  relation given by equat ion (10), we get for 
the case o f  J = 2 and M = 0 

2 

+ ,.,~m (84) BzoB2o = (jjml m2120)Cs~ C;-m2 
2 

where 

Thus,  

o r  

Therefore ,  

B2+o = B2o = B2o (85) 

( IBgol2)  ~ (B2+o) 2 

- .  + 

(jjmlm2120)Cj,. Cj_m2 
2 

m l m 2  1 - - m 2  

m i glvl 2 ! 

(B2o) 2= ~f,~nm 2 

(86) 

(87) 

Eo = ( H )  l 2 .,- 2 = - 5xq (B2o) (88) 
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Thus, for the single-particle energy we have 

e a = -xqf~(B2+o) 

where 

(89) 

0.583 -< N -< 0.696 (97) 

(Bfo) = ~ f mn m (90) 
m 

and n is the occupation number  of  the state ]jm). 
The factor F is given by 

51/213 m 2 - j ( j +  1)] 
Fm = [ j ( j  + 1)(2j + 1)(2j - 1)(2j + 3)] 1/2 (91) 

From these equations we see that there are two prolate and oblate 
solutions according to the occupied and unoccupied states for the single- 
particle states with different values of  m. This means that the total energy 
can be calculated as intrinsic states corresponding to the oblate and prolate 
shapes of  the density distributions. 

The energy difference between the ground states in the case of  the 
oblate and prolate solutions is given by 

_ _ _ 1  5 (2J + 1)5 3N2(1 - N2)(1 - 2N)  (92) E 
2xq216 j ( j  + 1)(2j - 1)(2j + 3) 

where N is related to the particle number  n as 

N = n / ( Z j +  1) (93) 

But, for nuclei with rotational motion, n has to satisfy the condition 

0 << n << 2j + 1 (94) 

Then, N satisfies the inequality 

0<< N<< 1 (95) 

Introducing the Hartree approximation by neglecting the exchange terms 
of the interaction, Thouless (1960) showed that the moment  of  inertia 
becomes equal to the ordinary moment  of  inertia calculated by using the 
Cranking model (Inglis, 1954). Then, the calculations show that the nuclei 
are expected to have rotational motions with oblate deformations in the 
mass region 

0.304 ~ N -< 0.414 (96) 

and with prolate deformations in the mass region 
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Thus, the characteristics o f  the nuclear structure depend upon  the limiting 
case of  the pairing correlations, which is studied by Stephens (1975), 
quadrupole  vibrations, and the rotations from quadrupole  deformations 
(Neergard and Froundorf ,  1976). 

Numerical  calculations were performed for different quantities using 
large values of j .  These calculations were carried out at values of  N = 0.359 
and N = 0.639 where rotational motions are expected (Osman,  1987) with 
oblate and prolate deformations,  respectively. The moment  o f  inertia j and 
the intrinsic quadrupole  moment  Qo were calculated and the results com- 
pared with values obtained using the Har t r ee -Fock  calculations. The results 
are shown in Table I. Calculat ions were also carried out for the quadrupole  
moment  o f  inertia of  the first 2 + excited state Q2, and for the reduced 
transit ion probabilities f rom the ground state to the first 2 + state B(E2 ,  0 ~  
2). These calculations were done for a value o f  N = 0.359, for compar ison  
with exact calculations given by Mulhall and S~ps (1964) for j =  11/2 
and n = 4. 

In Table I, the moment  of  inertia J is given in units of  

j ( j  + 1)(2j + ! ) /3xq 2 

The intrinsic quadrupole  moment  is in units of  

-47rq[(2 j  + 1)/5] ~/2 

The quadrupole  moment  o f  the first 2 + excited state Qz in units o f  

-47rq2/[j(j  + 1)(2j + 1)(2j + 1)(2j + 3)] ~/2 

and the reduced transition probabilities f rom the ground  state to the first 
2 + excited state B(E2, O~ 2) are in units o f  

5q6/[j( j  + 1)(2j + 1)(2j - 1)(2j + 3)] 

J and Qo are calculated in the case of  large j, and Q2 and B(E2, 0 ~ 2) are 
calculated in the case o f  j =  11/2 and n =4 .  

Table 1. Calculated Moment of Inertia, Intrinsic Quadrupole Moments, Static 
Quadrupole Moments, and Reduced Transition Probabilities 

N Present work Previous result 

0.359 0.469 
0.639 0.469 

Qo 0.359 0.471 
0.639 0.471 

Q2 0.359 16.948 
B(E2; 0~ 2) 0.359 3784.639 

0.472 (Hartree calculation) 
0.472 (Hartree calculation) 
0.431 (Hartree calculation) 
0.431 (Hartree calculation) 

16.312 (Exact calculation)" 
3826.574 (Exact calculation)" 

"See Marumori et al. (1967). 
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4. D I S C U S S I O N  A N D  C O N C L U S I O N  

In the presen t  work,  we s tud ied  the v ib ra t iona l  and  ro ta t iona l  mot ions  
in even nucle i  on a mic roscop i c  basis.  We cons t ruc ted  a re la t ion be tween  
the v ibra t iona l  and  ro ta t iona l  mot ions ,  in these nuclei .  We ca lcu la t ed  the 
energies ,  t rans i t ion  ampl i tudes ,  and  q u a d r u p o l e  moments .  F r o m  Table  I, 
we see tha t  the presen t  ca lcu la t ions  are in good  agreement  with previous  
ca lcula t ions .  

Thus,  our  present  inves t iga t ions  b r idge  the v ibra t iona l  and  the rota-  
t ional  col lect ive mot ions  in nuclei.  This is easi ly  done  by  compar ing  the 
mode l  o f  s t rong coupl ing  ( K h o o  et al., 1976) o f  the q u a d r u p o l e  m o d e  and  
the pa i r  mode .  The q u a d r u p o l e  mode  p lays  an impor t an t  role  for  bo th  the 
v ibra t iona l  and  the ro ta t iona l  mot ions .  
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